Âéw¶¹´«Ã½

How to apply

Key facts

Entry requirements

We accept a range of entry qualifications

Full entry requirements

Duration

Three years full-time

Fees

AED 71,610 (Sept 2025 intake)

Start date

September 2025

Entry requirements

We accept a range of entry qualifications

Full entry requirements

Duration

Three years full-time

Fees

AED 71,610 (Sept 2025 intake)

Start date

September 2025

Accredited by the Institution of Engineering and Technology (IET), our Electrical and Electronic Engineering course prepares you for a career in this dynamic field. This course is designed to meet industry demands, it provides an in-depth understanding of specialist areas such as Electronic Circuits and Systems, Embedded Application Design and Interfacing, and Electrical Transmission and Distribution.

You will use our state-of-the-art facilities to support your practical learning experience. These include specialised laboratories with experimental tools for general electronics and assembly, digital electronics, microprocessor engineering, power electronics, control systems, communications engineering, and Smart Grid technology.

Key benefits

  • Personalise your learning: Choose from a wide range of optional modules in Year 3 to align your studies with your interests and career goals.

  • Focused learning: Modules are delivered through our block teaching approach, so you can concentrate on one subject at a time.

What you will study

Block 1: General Engineering Tools and Principles 1

Provides you with sound knowledge and command of fundamental engineering tools, principles and mathematical techniques with emphasis on engineering applications. You will gain an appropriate background in the fundamental principles of Mathematics, Mechanical Principles (Solid Mechanics), Electronic Principles and their uses by carrying out analytical calculations and laboratory experiments. The module contains the well-recognized elements of classical engineering mathematics which universally underpin the formation of the professional engineer. Therefore, the module will concentrate on: (a) understanding mathematical concepts associated with engineering applications, and (b) applying mathematical skills and techniques to solve engineering problems. 

Block 2: General Engineering Tools and Principles 2

Builds on the common basis established in Engineering Tools and Principles 1. The aim of this module is to provide you with a clear understanding of Mathematical and Engineering concepts. You will gain an appropriate background in the fundamental principles of Mathematics, Mechanical Principles (Dynamics), Electronic Principles and their uses by carrying out analytical calculations and laboratory experiments. The focus in this module is on practical applications – introducing multivariable functions and their derivatives, matrices, vectors and complex numbers. These building blocks are combined with material from Engineering Tools and Principles 1 to study differential equations. The module also covers uses of statistics and probability in the engineering domain.

Block 3: Electronic Circuits and Devices

Covers the fundamental elements of the design and manufacturing of electronic devices. Further insight towards the underpinning principles, design processes and performance aspects of materials from which electronic devices are manufactured is explained with hands-on activities to fabricate simple electronic devices. Additionally, students gain an understanding of aspects of digital electronics and circuit design, including the use of simulation techniques to understand anticipated output and performance. This module introduces principal generic and distinctive features of computing, programming and interfacing microcontrollers for practical applications to provide a foundation for embedded systems.

Block 4: Electronic Circuits and Systems

Studies the processes of the analysis and design of electronic circuits and systems. Students will learn about circuit design and the necessary practical skills required for designing future electronic circuits and systems, driven by scientific curiosity and by industrial and societal needs. Students will work through the various stages of a product design process while considering the broader economic, social, and environmental implications of their decisions. The module introduces research from printed and on-line sources, including interpretation and referencing of this research and datasheets. Professional ethics and ethical design principles are presented and it is expected that students will factor these requirements into their product design.

Block 1: Electromagnetics and Communications

Develops an understanding of the theory, numerical modelling, and experimental practices relevant to electromagnetics and communications systems. The module also contains the well-recognized elements of advanced engineering mathematics which universally underpin the formation of the professional engineer. The principal aim of the module is to enhance and develop students’ understanding and ability to analyse and use the language of mathematics in the description of engineering. Content includes: Functions of several variables; Vector calculus; Integral transforms; Fourier series and Partial differential equations. Students will engage in practical investigation and design to develop the measurement and experimental skills associated with electromagnetic and communication systems via coursework and laboratory exercises.

Block 2: Dynamics, Instrumentation and Control

Covers three parts. The first part of the module introduces students to modelling and analysis of dynamic systems through the investigation of the system response, with an emphasis on the free and forced oscillations. You will learn about the idea of modelling physical systems, characteristic equations, natural frequencies, and vibration modes. In addition, different system’s engineering applications will be discussed to develop further understanding of the solution of the resulting differential equations (e.g., vibration systems, DC motor, quadrotor, battery, etc.).

The second part of the module concerns instrumentation aspects of computer control systems. You will learn about principles of interfacing industrial processes with control computers and the instrumentation required for this purpose. The third part of the module introduces students to the theory of control systems and computer control. The aim is to teach analysis and design of single-input single-output continuous and digital feedback systems. The background theory is supported by computer aided design studies (using the MATLAB/Simulink package) and practical laboratory experiments.

Blocks 3 and 4: Embedded Application Design and Interfacing and Design and Project Management

Through an industrial-style design and prototyping project, the Embedded Application Design and Interfacing module provides core skills in the application, design and development of a complete embedded system. This includes both the firmware and the component-level design of the necessary analog and digital interfacing subsystems allowing the embedded system to interface with common signals and networks. This will require the design of analog and digital interfacing, microprocessor system design, firmware development and communication with IoT-style networks. Relevant theory will be delivered alongside the practical project-led sessions to ensure that at all times the theory remains relevant to practice. Students will produce a prototype on a printed circuit board which will include some surface-mount components – and will thus develop skills in SMD assembly. On the firmware side, low-level programming techniques will be covered to develop the students’ skills in interacting directly with hardware: a common requirement of an electronics engineer.

Presents some of the background, theory and practice of project management to enable students to embed professional project management expertise in their professional and academic development, and to understand the interplay among science, engineering, design and project management. The module concentrates on the wider role and expectations of the project manager and students can expect to contribute to discussions ranging from the time value of money to anticipating how future sustainability pressures can influence a project now. Throughout the process, students will also learn the standard of good engineering design solutions and practical skills to develop and demonstrate the discipline specific designs.

Block 1: Advanced Digital Design

Builds on the knowledge from previous modules concerned with electronic principles and digital electronics. The module reviews the design philosophy in the light of using modern Electronic Computer Aided Design (ECAD) tools for design, simulation and implementation. Programmable Logic Devices (PLD) and Field Programmable Gate Arrays (FPGAs) are discussed. Application Specific Integrated Circuits (ASIC), microcontroller and DSP architectures / design routes are also presented. Algorithmic State Machines (ASMs) analysis, design and implementation techniques are also covered. The module presents major aspects of the modern top-down approach to VLSI circuit design, aiming to shorten the design cycle and to manage the increased hardware complexity. To this end, VHDL (Very High Speed Integrated Circuit Hardware Description Language), an industry-standard hardware description language largely used for PLD design, is introduced and discussed in detail using practical design examples. 

Block 2: Electrical Transmission and Distribution (Communication Networks for JIT students)

Develops awareness and advanced knowledge of both the theory and practice of the transmission and distribution of electrical power. The basic theory and rationale behind 3-phase power systems is given with an introduction to the power system network, which is then extended to modelling and analysis of power systems. Detailed mathematical models for three-phase transformers, transmission lines, loads and synchronous machines will be developed. The module covers necessary tools of power system analysis such as per unit representation, node equations, power flow analysis, and solution techniques such as Gauss-Seidel and Newton-Raphson for analysing the flows in simple networks. Aspects related to distribution system planning and design are covered, along with topics related to load modelling, application of capacitors, voltage regulation and harmonic analysis in these systems. The module also covers advanced topics such as short-circuit analysis (symmetrical components, sequence networks and fault current calculation) and topics related to power system stability such as transient stability (swing curve & equal area criterion) and voltage stability (PV & QV curves).

JIT students: Communication Networks covers the discipline of computer networks from components to fundamental functions and applications. The syllabus will be taught using the Internet as a model when appropriate to illustrate applications and techniques.

Block 3: Module choice

Choose one from the below for your block 3 module.

  • Advanced Embedded Systems and IoT with Individual Project
  • Mobile Communication 1 with Individual Project
  • Fundamentals of Power Electronics with Individual Project
  • Renewable Energy Electronic Devices 1 with Individual Project

The 'Individual Project' component in the block 3 modules will allow students to engage in a substantial piece of individual research and or product development work focused on a topic relevant to their specific discipline. The topic may be drawn from a variety of sources including their placement experience, research groups, the company in which they are employed or a subject of personal interest (provide suitable supervision is available). The chosen topic will require the student to formulate problems, conduct literature reviews, determine solutions, evaluate information, develop hardware & software as appropriate, process data, critically appraise and present their finding using a variety of media. Where appropriate to their discipline, the student will be required to present new design work to include the development of hardware and software as appropriate.

Block 4: Module choice

Choose one from the below for your block 4 module (you must take the module most relevant to your choice in Block 3):

  • Model-Based System Integration with Individual Project
  • Mobile Communication 2 with Individual Project
  • Advanced Power Electronics and Applications with Individual Project
  • Renewable Energy Electronic Devices 2 with Individual Project

Note: All modules are indicative and based on the current academic session. Course information is correct at the time of publication and is subject to review. Exact modules may, therefore, vary for your intake in order to keep content current. If there are changes to your course we will, where reasonable, take steps to inform you as appropriate.

The course is taught by experienced staff who will help you gain a sound understanding of engineering principles along with personal skills that will enable you to embark on a rewarding career.

Student-centred learning takes place through research and presentation of findings, report writing, individual and group assignments as well as practical work-based exercises for development of skills and competence.

Coursework components are largely laboratory-based and use assessment methods ranging from traditional formal reports, to group exercises assessed by logbook, oral examination and directed independent study.

Entry requirements

GCE A-Level

CCD

CBSE/ ICSE/ All Indian Boards

  • Successful completion of Standard XII with a 65% average from the best four subjects excluding Hindi or any other local language, e.g. Punjabi, Gujarati, Tamil, Marathi
  • Interview any candidate with 60% or above.

American High School Diploma + SAT

High School Diploma with a minimum GPA of 3.0 plus Advanced Placement, two subjects from group A with grade 3 or above ORSAT2 - 2 subject tests with a minimum score of 500 in each = 1000

UAE Tawjihiyya

Entry to IYZ only

International Baccalaureate Diploma

24 points

BTEC Level 3 Extended Diploma

DMM

African WAEC/ NECO/ WASSCE

5 "B" grades (only for Business Programme)

FBISE grade 12 (Pakistan)

85%

Curriculum Russian/Kazakhstan

Entry to IYZ only

English language tests and their entry requirements

IELTS Academic: 6.0 (minimum 5.5 in each band)

TOEFL Internet-based: 72 (17 in listening & writing, 20 in speaking and 18 in reading)

Pearson PTE Academic: 51

Additionally, students with the following qualifications may be considered as having met the English language requirements:

GCSE/IGCSE/O-Level English (as a first or second language): Grade C or higher

CBSE/ISC boards/NIOS/All state boards: A minimum grade of 55% in English

International Baccalaureate: Minimum grade 5 in English A1 (Standard or Higher Level) in IB OR a minimum of grade 5 in English B (Higher Level)

West African/Nigerian Curriculum WAEC/ WASSCE/ SSSCE: Minimum grade "C6"

Course specifications

Course title

Electrical and Electronic Engineering

Award

BEng (Hons)

Study level

Undergraduate

Study mode

Full-time

Start date

September 2025

Duration

Three years full-time

Fees

AED 71,610 (Sept 2025 intake)